Exogenous carbohydrate oxidation during ultraendurance exercise.

نویسندگان

  • Asker E Jeukendrup
  • Luke Moseley
  • Gareth I Mainwaring
  • Spencer Samuels
  • Samuel Perry
  • Christopher H Mann
چکیده

The purposes of this study were: 1) to obtain a measure of exogenous carbohydrate (CHO(Exo)) oxidation and plasma glucose kinetics during 5 h of exercise; and 2) to compare CHO(Exo) following the ingestion of a glucose solution (Glu) or a glucose + fructose solution (2:1 ratio, Glu+Fru) during ultraendurance exercise. Eight well-trained subjects exercised three times for 5 h at 58% maximum O2 consumption while ingesting either Glu or Glu+Fru (both delivering 1.5 g/min CHO) or water. The CHO used had a naturally high 13C enrichment, and five subjects received a primed continuous intravenous [6,6-2H2]glucose infusion. CHO(Exo) rates following the ingestion of Glu leveled off after 120 min and peaked at 1.24 +/- 0.04 g/min. The ingestion of Glu+Fru resulted in a significantly higher peak rate of CHO(Exo) (1.40 +/- 0.08 g/min), a faster rate of increase in CHO(Exo), and an increase in the percentage of CHO(Exo) oxidized (65-77%). However, the rate of appearance and disappearance of Glu continued to increase during exercise, with no differences between trials. These data suggest an important role for gluconeogenesis during the later stages of exercise. Following the ingestion of Glu+Fru, cadence (rpm) was maintained, and the perception of stomach fullness was reduced relative to Glu. The ingestion of Glu+Fru increases CHO(Exo) compared with the ingestion of Glu alone, potentially through the oxidation of CHO(Exo) in the liver or through the conversion to, and oxidation of, lactate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise

Peak exogenous carbohydrate oxidation rates typically reach ~1 g∙min-1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogen...

متن کامل

Ingesting Different Types of a Single Carbohydrate

1 KEY POINTS • During prolonged exercise, the performance benefits of carbohydrate ingestion may be achieved by maintaining plasma glucose concentration and high rates of carbohydrate oxidation. • Limitations to exogenous carbohydrate oxidation appear to be in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that us...

متن کامل

Glucose polymer molecular weight does not affect exogenous carbohydrate oxidation.

PURPOSE To compare the effects of high (HMW) versus low molecular weight (LMW) glucose polymer solutions on the pattern of substrate oxidation during exercise. METHODS Eight cyclists (VO(2max): 63 +/- 8 mL.kg(-1).min(-1)) performed three 150-min cycling trials at 64 +/- 5% VO(2max) while ingesting 11.25% HMW (500-750 kg.mol(-1), 21 mOsm.kg(-1)) or LMW (8 kg.mol(-1), 110 mOsm.kg(-1)) solutions...

متن کامل

"Fat adaptation" for athletic performance: the nail in the coffin?

ENDURANCE ATHLETES have a high capacity for the oxidation of fat during exercise as a legacy of their training. Therefore, it is intriguing that this capacity can be easily upregulated by the chronic consumption of a low-carbohydrate ( 2.5 g kg 1 day ), high-fat ( 65–70% of energy) diet. For example, 2–4 wk of exposure to such a diet in trained individuals has been shown to markedly increase fa...

متن کامل

Oxidation of combined ingestion of glucose and fructose during exercise.

The purpose of the present study was to examine whether combined ingestion of a large amount of fructose and glucose during cycling exercise would lead to exogenous carbohydrate oxidation rates >1 g/min. Eight trained cyclists (maximal O(2) consumption: 62 +/- 3 ml x kg(-1) x min(-1)) performed four exercise trials in random order. Each trial consisted of 120 min of cycling at 50% maximum power...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 100 4  شماره 

صفحات  -

تاریخ انتشار 2006